

Second Semester M.Tech. Degree Examination, June /July 2016 Real Time Operating Systems

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions.

- a. Write pseudocode for basic real time service using polling technique and event driven services. Provide necessary description. (08 Marks)
 - b. Describe the time line diagram of real time system. Represent changes in it if hardware acceleration is used.
 - c. Write any four key features of RTOS. (04 Marks)
- a. Describe isochronal, soft real-time, anytime service and soft isochronal real time services with necessary diagrams.

 (08 Marks)
 - b. With the help of pseudocode, explain thread safe reentrant codes. (08 Marks)
 - c. Discuss two algorithms for the determination of necessary and sufficient feasibility testing with RM policy. (04 Marks)
- 3 a. Derive an expression for RMLUB considering two services. (10 Marks)
 - b. Consider four services s_1 , s_2 , s_3 and s_4 with release time $T_1 = 2$, $T_2 = 5$, $T_3 = 7$, $T_4 = 13$; having execution time $c_1 = 1$, $c_2 = 1$, $c_3 = 1$, $c_4 = 2$. Write timing diagram for RM policy and calculate individual service utility. Also draw timing diagram for EDF and LLF policies. (Assume prio(s_1) > prio(s_2) > prio(s_3) > prio(s_4) for fixed priority policy). (10 Marks)
- 4 a. Write the equations and conditions for WCET and ACET for hard and soft real time systems respectively. Also list five conditions for I/o overlap situations relative to S_i deadline D_i.
 - b. Explain ECC memory design using Hamming code. Let (11000100)₂ be a data byte. Find the encoded bit stream using Hamming code. Assuming a single bit error at position do₃ of encoded bit stream; detect and correct the error. (12 Marks)
- 5 a. Briefly describe the following:
 - i) Pipelining technique
 - ii) Physical memory hierarchy
 - iii) Deadlock and livelock. (12 Marks)
 - b. Describe unbounded priority inversion. Suggest solutions for it. (08 Marks)
- 6 a. Write short notes on:
 - i) Different levels of single step debugging
 - ii) Exceptions and asserts. (10 Marks)
 - b. Describe three firmware components. (06 Marks)
 - c. Explain reentrant application libraries. (04 Marks)
- 7 a. Explain drilldown tuning. (08 Marks)
 - b. Explain message queue and heap based message que communication between tasks.
 - (08 Marks)
 - c. List the basic methods for optimizing code segments. (04 Marks)
- 8 a. Discuss reliability with an example, compare reliability and availability. (10 Marks)
 - b. Consider an example of RTOS based digital clock and thermometer application using PIC microcontroller. With necessary pseudocode explain how multitasking is achieved in this application? (10 Marks)

* * * * *